67 lines
2.7 KiB
HTML
67 lines
2.7 KiB
HTML
<article>
|
|
<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
|
<h1>Dynamic Systems in Games</h1>
|
|
<p>Here, take a look at this simple game I coded up. Your task is to keep an engine's temperature as high as possible, to maximize power output, without dmaaging the engine. The threshhold for damage is at <span data-var="damage_threshhold">10</span> degrees, and the engine will stop burning and deignite if it goes under <span data-var="ignition_threshhold">2</span> degrees.</p>
|
|
<div class="row-fluid">
|
|
<div id="fuel-management-1" class="span4 offset4">
|
|
<script type="text/javascript">
|
|
(function (element) {
|
|
var container = $(element);
|
|
var T = {
|
|
"update": function () {
|
|
this.value += RR.value*timestep/1000;
|
|
this.value -= this.value*temperature_decay*timestep/1000;
|
|
if (this.value < 0) { this.value = 0; }
|
|
},
|
|
"out": function () {
|
|
container.find('#temp-out').html(this.value.toFixed(2));
|
|
if (this.value > damage_threshhold) { container.find('#damage').show();}
|
|
else { container.find('#damage').hide(); }
|
|
if (this.value < ignition_threshhold) { container.find('#noignition').show(); }
|
|
else { container.find('#noignition').hide(); }
|
|
},
|
|
"value": 0,
|
|
};
|
|
var F = {
|
|
"update": function () { this.value = container.find('[name=fuel]').val(); },
|
|
"out": function () {},
|
|
"value": 0,
|
|
};
|
|
var RR = {
|
|
"update": function () { this.value = T.value * F.value; },
|
|
"out": function () {},
|
|
"value": 0,
|
|
};
|
|
|
|
var ignition_threshhold = 2;
|
|
var damage_threshhold = 10;
|
|
var temperature_decay = 0.5;
|
|
var timestep=10;
|
|
|
|
var quantities = [T, F, RR];
|
|
var a, b;
|
|
|
|
$(element).ready(function () {
|
|
container.find('[name=ignition]').on('click', function() { T.value = T.value + 5; });
|
|
a = setInterval(jQuery.each, timestep, quantities, function() { this.update(); });
|
|
b = setInterval(jQuery.each, timestep, quantities, function() { this.out(); });
|
|
});
|
|
return {
|
|
'container': container,
|
|
'quantities': quantities,
|
|
};
|
|
})($('#fuel-management-1'));
|
|
</script>
|
|
<div id="flow_rate">
|
|
<label for="fuel">Fuel Flow Rate</label>
|
|
<input type="range" name="fuel" min=0 max=1 step=0.01 value=.8>
|
|
</div>
|
|
<input type="button" name="ignition" value="Ignite!">
|
|
<span><span id="temp-out">0</span> degrees</span>
|
|
<span id="noignition" class="label label-info">No ignition</span>
|
|
<span id="damage" class="label label-warning">DAMAGE!</span>
|
|
</div>
|
|
</div>
|
|
<p>It's interesting! The fundamental relationship here is \[\frac{\partial T}{\partial t} = c_{F} T F - c_{T} (T - T_{0})\]</p>
|
|
</article>
|